
S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-1

6 INSTRUCTION SET

OVERVIEW

The instruction set is specifically designed to support large register files that are typical of most S3C8-series
microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of the
instruction set include:

— A full complement of 8-bit arithmetic and logic operations, including multiply and divide

— No special I/O instructions (I/O control/data registers are mapped directly into the register file)

— Decimal adjustment included in binary-coded decimal (BCD) operations

— 16-bit (word) data can be incremented and decremented

— Flexible instructions for bit addressing, rotate, and shift operations

DATA TYPES

The CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can be set,
cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the least
significant (right-most) bit.

REGISTER ADDRESSING

To access an individual register, an 8-bit address in the range 0–255 or the 4-bit address of a working register is
specified. Paired registers can be used to construct 16-bit data, 16-bit program memory, or data memory
addresses. For detailed information about register addressing, please refer to Chapter 2, "Address Spaces."

ADDRESSING MODES

There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA),
Relative (RA), Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please
refer to Chapter 3, "Addressing Modes."

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-2

Table 6-1. Instruction Group Summary

Mnemonic Operands Instruction

Load Instructions

CLR dst Clear

LD dst,src Load

LDB dst,src Load bit

LDE dst,src Load external data memory

LDC dst,src Load program memory

LDED dst,src Load external data memory and decrement

LDCD dst,src Load program memory and decrement

LDEI dst,src Load external data memory and increment

LDCI dst,src Load program memory and increment

LDEPD dst,src Load external data memory with pre-decrement

LDCPD dst,src Load program memory with pre-decrement

LDEPI dst,src Load external data memory with pre-increment

LDCPI dst,src Load program memory with pre-increment

LDW dst,src Load word

POP dst Pop from stack

POPUD dst,src Pop user stack (decrementing)

POPUI dst,src Pop user stack (incrementing)

PUSH src Push to stack

PUSHUD dst,src Push user stack (decrementing)

PUSHUI dst,src Push user stack (incrementing)

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-3

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands Instruction

Arithmetic Instructions

ADC dst,src Add with carry

ADD dst,src Add

CP dst,src Compare

DA dst Decimal adjust

DEC dst Decrement

DECW dst Decrement word

DIV dst,src Divide

INC dst Increment

INCW dst Increment word

MULT dst,src Multiply

SBC dst,src Subtract with carry

SUB dst,src Subtract

Logic Instructions

AND dst,src Logical AND

COM dst Complement

OR dst,src Logical OR

XOR dst,src Logical exclusive OR

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-4

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands Instruction

Program Control Instructions

BTJRF dst,src Bit test and jump relative on false

BTJRT dst,src Bit test and jump relative on true

CALL dst Call procedure

CPIJE dst,src Compare, increment and jump on equal

CPIJNE dst,src Compare, increment and jump on non-equal

DJNZ r,dst Decrement register and jump on non-zero

ENTER Enter

EXIT Exit

IRET Interrupt return

JP cc,dst Jump on condition code

JP dst Jump unconditional

JR cc,dst Jump relative on condition code

NEXT Next

RET Return

WFI Wait for interrupt

Bit Manipulation Instructions

BAND dst,src Bit AND

BCP dst,src Bit compare

BITC dst Bit complement

BITR dst Bit reset

BITS dst Bit set

BOR dst,src Bit OR

BXOR dst,src Bit XOR

TCM dst,src Test complement under mask

TM dst,src Test under mask

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-5

Table 6-1. Instruction Group Summary (Concluded)

Mnemonic Operands Instruction

Rotate and Shift Instructions

RL dst Rotate left

RLC dst Rotate left through carry

RR dst Rotate right

RRC dst Rotate right through carry

SRA dst Shift right arithmetic

SWAP dst Swap nibbles

CPU Control Instructions

CCF Complement carry flag

DI Disable interrupts

EI Enable interrupts

IDLE Enter Idle mode

NOP No operation

RCF Reset carry flag

SB0 Set bank 0

SB1 Set bank 1

SCF Set carry flag

SRP src Set register pointers

SRP0 src Set register pointer 0

SRP1 src Set register pointer 1

STOP Enter Stop mode

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-6

FLAGS REGISTER (FLAGS)

The flags register FLAGS contains eight bits which describe the current status of CPU operations. Four of these
bits, FLAGS.7–FLAGS.4, can be tested and used with conditional jump instructions. Two other flag bits, FLAGS.3
and FLAGS.2, are used for BCD arithmetic.

The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank
address status bit (FLAGS.0) to indicate whether register bank 0 or bank 1 is currently being addressed.

FLAGS register can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load
instruction. Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags
register. For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of
the AND instruction. If the AND instruction uses the Flags register as the destination, then two write will
simultaneously occur to the Flags register producing an unpredictable result.

SYSTEM FLAGS REGISTER (FLAGS)
D5H, Set 1, R/W

.7 .6 .5 LSBMSB .4 .3 .2 .1 .0

Bank address
status flag (BA)

Fast interrupt
status flag (FIS)

Half-carry flag (H)

Decimal adjust flag (D)

Carry flag (C)

Zero flag (Z)

Sign flag (S)

Overflow flag (V)

Figure 6-1. System Flags Register (FLAGS)

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-7

FLAG DESCRIPTIONS

C Carry Flag (FLAGS.7)

The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to
the bit 7 position (MSB). After rotate and shift operations have been performed, it contains the last value
shifted out of the specified register. Program instructions can set, clear, or complement the carry flag.

Z Zero Flag (FLAGS.6)

For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. In
operations that test register bits, and in shift and rotate operations, the Z flag is set to "1" if the result is
logic zero.

S Sign Flag (FLAGS.5)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the
result. A logic zero indicates a positive number and a logic one indicates a negative number.

V Overflow Flag (FLAGS.4)

The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than
– 128. It is cleared to "0" after a logic operation has been performed.

D Decimal Adjust Flag (FLAGS.3)

The DA bit is used to specify what type of instruction was executed last during BCD operations so that a
subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by
programmers, and it cannot be addressed as a test condition.

H Half-Carry Flag (FLAGS.2)

The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows
out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous
addition or subtraction into the correct decimal (BCD) result. The H flag is normally not accessed directly
by a program.

FIS Fast Interrupt Status Flag (FLAGS.1)

The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing.
When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET
instruction is executed.

BA Bank Address Flag (FLAGS.0)

The BA flag indicates which register bank in the set 1 area of the internal register file is currently
selected, bank 0 or bank 1. The BA flag is cleared to "0" (select bank 0) when the SB0 instruction is
executed and is set to "1" (select bank 1) when the SB1 instruction is executed.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-8

INSTRUCTION SET NOTATION

Table 6-2. Flag Notation Conventions

Flag Description

C Carry flag

Z Zero flag

S Sign flag

V Overflow flag

D Decimal-adjust flag

H Half-carry flag

0 Cleared to logic zero

1 Set to logic one

* Set or cleared according to operation

– Value is unaffected

x Value is undefined

Table 6-3. Instruction Set Symbols

Symbol Description

dst Destination operand

src Source operand

@ Indirect register address prefix

PC Program counter

IP Instruction pointer

FLAGS Flags register (D5H)

RP Register pointer

Immediate operand or register address prefix

H Hexadecimal number suffix

D Decimal number suffix

B Binary number suffix

opc Opcode

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-9

Table 6-4. Instruction Notation Conventions

Notation Description Actual Operand Range

cc Condition code See list of condition codes in Table 6-6.

r Working register only Rn (n = 0–15)

rb Bit (b) of working register Rn.b (n = 0–15, b = 0–7)

r0 Bit 0 (LSB) of working register Rn (n = 0–15)

rr Working register pair RRp (p = 0, 2, 4, ..., 14)

R Register or working register reg or Rn (reg = 0–255, n = 0–15)

Rb Bit 'b' of register or working register reg.b (reg = 0–255, b = 0–7)

RR Register pair or working register pair reg or RRp (reg = 0–254, even number only,
where p = 0, 2, ..., 14)

IA Indirect addressing mode addr (addr = 0–254, even number only)

Ir Indirect working register only @Rn (n = 0–15)

IR Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)

Irr Indirect working register pair only @RRp (p = 0, 2, ..., 14)

IRR Indirect register pair or indirect working
register pair

@RRp or @reg (reg = 0–254, even only,
where p = 0, 2, ..., 14)

X Indexed addressing mode #reg[Rn] (reg = 0–255, n = 0–15)

XS Indexed (short offset) addressing mode #addr[RRp] (addr = range –128 to +127,
where p = 0, 2, ..., 14)

XL Indexed (long offset) addressing mode #addr [RRp] (addr = range 0–65535, where
p = 2, ..., 14)

DA Direct addressing mode addr (addr = range 0–65535)

RA Relative addressing mode addr (addr = a number from +127 to –128 that is an
offset relative to the address of the next instruction)

IM Immediate addressing mode #data (data = 0–255)

IML Immediate (long) addressing mode #data (data = 0–65535)

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-10

Table 6-5. Opcode Quick Reference

OPCODE MAP

LOWER NIBBLE (HEX)

– 0 1 2 3 4 5 6 7

U 0 DEC
R1

DEC
IR1

ADD
r1,r2

ADD
r1,Ir2

ADD
R2,R1

ADD
IR2,R1

ADD
R1,IM

BOR
r0–Rb

P 1 RLC
R1

RLC
IR1

ADC
r1,r2

ADC
r1,Ir2

ADC
R2,R1

ADC
IR2,R1

ADC
R1,IM

BCP
r1.b, R2

P 2 INC
R1

INC
IR1

SUB
r1,r2

SUB
r1,Ir2

SUB
R2,R1

SUB
IR2,R1

SUB
R1,IM

BXOR
r0–Rb

E 3 JP
IRR1

SRP/0/1
IM

SBC
r1,r2

SBC
r1,Ir2

SBC
R2,R1

SBC
IR2,R1

SBC
R1,IM

BTJR
r2.b, RA

R 4 DA
R1

DA
IR1

OR
r1,r2

OR
r1,Ir2

OR
R2,R1

OR
IR2,R1

OR
R1,IM

LDB
r0–Rb

5 POP
R1

POP
IR1

AND
r1,r2

AND
r1,Ir2

AND
R2,R1

AND
IR2,R1

AND
R1,IM

BITC
r1.b

N 6 COM
R1

COM
IR1

TCM
r1,r2

TCM
r1,Ir2

TCM
R2,R1

TCM
IR2,R1

TCM
R1,IM

BAND
r0–Rb

I 7 PUSH
R2

PUSH
IR2

TM
r1,r2

TM
r1,Ir2

TM
R2,R1

TM
IR2,R1

TM
R1,IM

BIT
r1.b

B 8 DECW
RR1

DECW
IR1

PUSHUD
IR1,R2

PUSHUI
IR1,R2

MULT
R2,RR1

MULT
IR2,RR1

MULT
IM,RR1

LD
r1, x, r2

B 9 RL
R1

RL
IR1

POPUD
IR2,R1

POPUI
IR2,R1

DIV
R2,RR1

DIV
IR2,RR1

DIV
IM,RR1

LD
r2, x, r1

L A INCW
RR1

INCW
IR1

CP
r1,r2

CP
r1,Ir2

CP
R2,R1

CP
IR2,R1

CP
R1,IM

LDC
r1, Irr2,

xL

E B CLR
R1

CLR
IR1

XOR
r1,r2

XOR
r1,Ir2

XOR
R2,R1

XOR
IR2,R1

XOR
R1,IM

LDC
r2, Irr2,

xL

C RRC
R1

RRC
IR1

CPIJE
Ir,r2,RA

LDC
r1,Irr2

LDW
RR2,RR1

LDW
IR2,RR1

LDW
RR1,IML

LD
r1, Ir2

H D SRA
R1

SRA
IR1

CPIJNE
Irr,r2,RA

LDC
r2,Irr1

CALL
IA1

LD
IR1,IM

LD
Ir1, r2

E E RR
R1

RR
IR1

LDCD
r1,Irr2

LDCI
r1,Irr2

LD
R2,R1

LD
R2,IR1

LD
R1,IM

LDC
r1, Irr2, xs

X F SWAP
R1

SWAP
IR1

LDCPD
r2,Irr1

LDCPI
r2,Irr1

CALL
IRR1

LD
IR2,R1

CALL
DA1

LDC
r2, Irr1, xs

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-11

Table 6-5. Opcode Quick Reference (Continued)

OPCODE MAP

LOWER NIBBLE (HEX)

– 8 9 A B C D E F

U 0 LD
r1,R2

LD
r2,R1

DJNZ
r1,RA

JR
cc,RA

LD
r1,IM

JP
cc,DA

INC
r1

NEXT

P 1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ENTER

P 2 EXIT

E 3 WFI

R 4 SB0

5 SB1

N 6 IDLE

I 7 ↓ ↓ ↓ ↓ ↓ ↓ ↓ STOP

B 8 DI

B 9 EI

L A RET

E B IRET

C RCF

H D ↓ ↓ ↓ ↓ ↓ ↓ ↓ SCF

E E CCF

X F LD
r1,R2

LD
r2,R1

DJNZ
r1,RA

JR
cc,RA

LD
r1,IM

JP
cc,DA

INC
r1

NOP

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-12

CONDITION CODES

The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal"
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump
instructions.

Table 6-6. Condition Codes

Binary Mnemonic Description Flags Set

0000 F Always false –

1000 T Always true –

0111 * C Carry C = 1

1111 * NC No carry C = 0

0110 * Z Zero Z = 1

1110 * NZ Not zero Z = 0

1101 PL Plus S = 0

0101 MI Minus S = 1

0100 OV Overflow V = 1

1100 NOV No overflow V = 0

0110 * EQ Equal Z = 1

1110 * NE Not equal Z = 0

1001 GE Greater than or equal (S XOR V) = 0

0001 LT Less than (S XOR V) = 1

1010 GT Greater than (Z OR (S XOR V)) = 0

0010 LE Less than or equal (Z OR (S XOR V)) = 1

1111 * UGE Unsigned greater than or equal C = 0

0111 * ULT Unsigned less than C = 1

1011 UGT Unsigned greater than (C = 0 AND Z = 0) = 1

0011 ULE Unsigned less than or equal (C OR Z) = 1

NOTES:
1. Asterisks (*) indicate condition codes which are related to two different mnemonics but which test the same flag. For

example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used.
Following a CP instruction, you would probably want to use the instruction EQ.

2. For operations using unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-13

INSTRUCTION DESCRIPTIONS

This Chapter contains detailed information and programming examples for each instruction in the 8-series
instruction set. Information is arranged in a consistent format for improved readability and for quick reference.
The following information is included in each instruction description:

— Instruction name (mnemonic)

— Full instruction name

— Source/destination format of the instruction operand

— Shorthand notation of the instruction's operation

— Textual description of the instruction's effect

— Flag settings that may be affected by the instruction

— Detailed description of the instruction's format, execution time, and addressing mode(s)

— Programming example(s) explaining how to use the instruction

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-14

ADC — Add with carry

ADC dst,src

Operation: dst ← dst + src + c

The source operand, along with the carry flag setting, is added to the destination operand and the
sum is stored in the destination. The contents of the source are unaffected. Two's-complement
addition is performed. In multiple-precision arithmetic, this instruction lets the carry value from
the addition of low-order operands be carried into the addition of high-order operands.

Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result

is of the opposite sign; cleared otherwise.
D: Always cleared to "0".
H: Set if there is a carry from the most significant bit of the low-order four bits of the result;

cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 12 r r

13 r lr

opc src dst 3 10 14 R R

15 R IR

opc dst src 3 10 16 R IM

Examples: Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and
register 03H = 0AH:

ADC R1,R2 → R1 = 14H, R2 = 03H

ADC R1,@R2 → R1 = 1BH, R2 = 03H

ADC 01H,02H → Register 01H = 24H, register 02H = 03H

ADC 01H,@02H → Register 01H = 2BH, register 02H = 03H

ADC 01H,#11H → Register 01H = 32H

In the first example, the destination register R1 contains the value 10H, the carry flag is set to
"1", and the source working register R2 contains the value 03H. The statement "ADC R1,R2"
adds 03H and the carry flag value ("1") to the destination value 10H, leaving 14H in the register
R1.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-15

ADD — Add

ADD dst,src

Operation: dst ← dst + src

The source operand is added to the destination operand and the sum is stored in the destination.
The contents of the source are unaffected. Two's-complement addition is performed.

Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the

result is of the opposite sign; cleared otherwise.
D: Always cleared to "0".
H: Set if a carry from the low-order nibble occurred.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 02 r r

03 r lr

opc src dst 3 10 04 R R

05 R IR

opc dst src 3 10 06 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

ADD R1,R2 → R1 = 15H, R2 = 03H

ADD R1,@R2 → R1 = 1CH, R2 = 03H

ADD 01H,02H → Register 01H = 24H, register 02H = 03H

ADD 01H,@02H → Register 01H = 2BH, register 02H = 03H

ADD 01H,#25H → Register 01H = 46H

In the first example, the destination working register R1 contains 12H and the source working
register R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H
in the register R1.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-16

AND — Logical AND

AND dst,src

Operation: dst ← dst AND src

The source operand is logically ANDed with the destination operand. The result is stored in the
destination. The AND operation causes a "1" bit to be stored whenever the corresponding bits in
the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the
source are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 52 r r

53 r lr

opc src dst 3 10 54 R R

55 R IR

opc dst src 3 10 56 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

AND R1,R2 → R1 = 02H, R2 = 03H

AND R1,@R2 → R1 = 02H, R2 = 03H

AND 01H,02H → Register 01H = 01H, register 02H = 03H

AND 01H,@02H → Register 01H = 00H, register 02H = 03H

AND 01H,#25H → Register 01H = 21H

In the first example, the destination working register R1 contains the value 12H and the source
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source
operand 03H with the destination operand value 12H, leaving the value 02H in the register R1.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-17

BAND — Bit AND

BAND dst,src.b

BAND dst.b,src

Operation: dst(0) ← dst(0) AND src(b)

or

dst(b) ← dst(b) AND src(0)

The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of
the destination (or the source). The resultant bit is stored in the specified bit of the destination.
No other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | b | 0 src 3 10 67 r0 Rb

opc src | b | 1 dst 3 10 67 Rb r0

NOTE: In the second byte of the 3-byte instruction format, the destination (or source) address is four bits,
the bit address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R1 = 07H and register 01H = 05H:

BAND R1,01H.1 → R1 = 06H, register 01H = 05H

BAND 01H.1,R1 → Register 01H = 05H, R1 = 07H

In the first example, the source register 01H contains the value 05H (00000101B) and the
destination working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1"
ANDs the bit 1 value of the source register ("0") with the bit 0 value of the register R1
(destination), leaving the value 06H (00000110B) in the register R1.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-18

BCP — Bit Compare

BCP dst,src.b

Operation: dst(0) – src(b)

The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination.
The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both
operands are unaffected by the comparison.

Flags: C: Unaffected.
Z: Set if the two bits are the same; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | b | 0 src 3 10 17 r0 Rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address "b"
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H and register 01H = 01H:

BCP R1,01H.1 → R1 = 07H, register 01H = 01H

If the destination working register R1 contains the value 07H (00000111B) and the source
register 01H contains the value 01H (00000001B), the statement "BCP R1,01H.1" compares bit
one of the source register (01H) and bit zero of the destination register (R1). Because the bit
values are not identical, the zero flag bit (Z) is cleared in the FLAGS register (0D5H).

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-19

BITC — Bit Complement

BITC dst.b

Operation: dst(b) ← NOT dst(b)

This instruction complements the specified bit within the destination without affecting any other
bit in the destination.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst | b | 0 2 8 57 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address "b"
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H

BITC R1.1 → R1 = 05H

If the working register R1 contains the value 07H (00000111B), the statement "BITC R1.1"
complements bit one of the destination and leaves the value 05H (00000101B) in the register R1.
Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (0D5H)
is cleared.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-20

BITR — Bit Reset

BITR dst.b

Operation: dst(b) ← 0

The BITR instruction clears the specified bit within the destination without affecting any other bit
in the destination.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst | b | 0 2 8 77 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address "b"
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H:

BITR R1.1 → R1 = 05H

If the value of the working register R1 is 07H (00000111B), the statement "BITR R1.1" clears bit
one of the destination register R1, leaving the value 05H (00000101B).

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-21

BITS — Bit Set

BITS dst.b

Operation: dst(b) ← 1

The BITS instruction sets the specified bit within the destination without affecting any other bit in
the destination.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst | b | 1 2 8 77 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address "b"
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H:

BITS R1.3 → R1 = 0FH

If the working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets
bit three of the destination register R1 to "1", leaving the value 0FH (00001111B).

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-22

BOR — Bit OR

BOR dst,src.b

BOR dst.b,src

Operation: dst(0) ← dst(0) OR src(b)

or

dst(b) ← dst(b) OR src(0)

The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the
destination (or the source). The resulting bit value is stored in the specified bit of the destination.
No other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | b | 0 src 3 10 07 r0 Rb

opc src | b | 1 dst 3 10 07 Rb r0

NOTE: In the second byte of the 3-byte instruction format, the destination (or the source) address is four
bits, the bit address "b" is three bits, and the LSB address value is one bit.

Examples: Given: R1 = 07H and register 01H = 03H:

BOR R1, 01H.1 → R1 = 07H, register 01H = 03H

BOR 01H.2, R1 → Register 01H = 07H, R1 = 07H

In the first example, the destination working register R1 contains the value 07H (00000111B) and
the source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically
ORs bit one of the register 01H (source) with bit zero of R1 (destination). This leaves the same
value (07H) in the working register R1.

In the second example, the destination register 01H contains the value 03H (00000011B) and the
source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically
ORs bit two of the register 01H (destination) with bit zero of R1 (source). This leaves the value
07H in the register 01H.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-23

BTJRF — Bit Test, Jump Relative on False

BTJRF dst,src.b

Operation: If src(b) is a "0", then PC ← PC + dst

The specified bit within the source operand is tested. If it is a "0", the relative address is added to
the program counter and control passes to the statement whose address is currently in the
program counter. Otherwise, the instruction following the BTJRF instruction is executed.

Flags: No flags are affected.

Format:

(1)
Bytes Cycles Opcode

(Hex)
Addr Mode
dst src

opc src | b | 0 dst 3 16/18 (2) 37 RA rb

NOTES:
1. In the second byte of the instruction format, the source address is four bits, the bit address "b" is three

bits, and the LSB address value is one bit in length.
2. Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 = 07H:

BTJRF SKIP,R1.3 → PC jumps to SKIP location

If the working register R1 contains the value 07H (00000111B), the statement "BTJRF
SKIP,R1.3" tests bit 3. Because it is "0", the relative address is added to the PC and the PC
jumps to the memory location pointed to by the SKIP (Remember that the memory location must
be within the allowed range of + 127 to – 128).

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-24

BTJRT — Bit Test, Jump Relative on True

BTJRT dst,src.b

Operation: If src(b) is a "1", then PC ← PC + dst

The specified bit within the source operand is tested. If it is a "1", the relative address is added to
the program counter and control passes to the statement whose address is now in the PC.
Otherwise, the instruction following the BTJRT instruction is executed.

Flags: No flags are affected.

Format:

(1)
Bytes Cycles Opcode

(Hex)
Addr Mode
dst src

opc src | b | 1 dst 3 16/18 (2) 37 RA rb

NOTES:
1. In the second byte of the instruction format, the source address is four bits, the bit address "b" is three

bits, and the LSB address value is one bit in length.
2. Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 = 07H:

BTJRT SKIP,R1.1

If the working register R1 contains the value 07H (00000111B), the statement "BTJRT
SKIP,R1.1" tests bit one in the source register (R1). Because it is a "1", the relative address is
added to the PC and the PC jumps to the memory location pointed to by the SKIP.

Remember that the memory location addressed by the BTJRT instruction must be within the
allowed range of + 127 to – 128.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-25

BXOR — Bit XOR

BXOR dst,src.b

BXOR dst.b,src

Operation: dst(0) ← dst(0) XOR src(b)

or

dst(b) ← dst(b) XOR src(0)

The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB)
of the destination (or the source). The result bit is stored in the specified bit of the destination. No
other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | b | 0 src 3 10 27 r0 Rb

opc src | b | 1 dst 3 10 27 Rb r0

NOTE: In the second byte of the 3-byte instruction format, the destination (or the source) address is four
bits, the bit address "b" is three bits, and the LSB address value is one bit in length.

Examples: Given: R1 = 07H (00000111B) and register 01H = 03H (00000011B):

BXOR R1,01H.1 → R1 = 06H, register 01H = 03H

BXOR 01H.2,R1 → Register 01H = 07H, R1 = 07H

In the first example, the destination working register R1 has the value 07H (00000111B) and the
source register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1"
exclusive-ORs bit one of the register 01H (the source) with bit zero of R1 (the destination). The
result bit value is stored in bit zero of R1, changing its value from 07H to 06H. The value of the
source register 01H is unaffected.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-26

CALL — Call Procedure

CALL dst

Operation: SP ← SP – 1
@SP ← PCL
SP ← SP – 1
@SP ← PCH
PC ← dst

The contents of the program counter are pushed onto the top of the stack. The program counter
value used is the address of the first instruction following the CALL instruction. The specified
destination address is then loaded into the program counter and points to the first instruction of a
procedure. At the end of the procedure the return instruction (RET) can be used to return to the
original program flow. RET pops the top of the stack back into the program counter.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 3 18 F6 DA

opc dst 2 18 F4 IRR

opc dst 2 20 D4 IA

Examples: Given: R0 = 35H, R1 = 21H, PC = 1A47H, and SP = 0002H:

CALL 3521H → SP = 0000H
(Memory locations 0000H = 1AH, 0001H = 4AH,
where, 4AH is the address that follows the instruction.)

CALL @RR0 → SP = 0000H (0000H = 1AH, 0001H = 49H)

CALL #40H → SP = 0000H (0000H = 1AH, 0001H = 49H)

In the first example, if the program counter value is 1A47H and the stack pointer contains the
value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the
stack. The stack pointer now points to the memory location 0000H. The PC is then loaded with
the value 3521H, the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and the stack pointer are the same as in the first example,
the statement "CALL @RR0" produces the same result except that the 49H is stored in stack
location 0001H (because the two-byte instruction format was used). The PC is then loaded with
the value 3521H, the address of the first instruction in the program sequence to be executed.
Assuming that the contents of the program counter and the stack pointer are the same as in the
first example, if the program address 0040H contains 35H and the program address 0041H
contains 21H, the statement "CALL #40H" produces the same result as in the second example.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-27

CCF — Complement Carry Flag

CCF

Operation: C ← NOT C

The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic
zero. If C = "0", the value of the carry flag is changed to logic one.

Flags: C: Complemented.

No other flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 EF

Example: Given: The carry flag = "0":

CCF

If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H),
changing its value from logic zero to logic one.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-28

CLR — Clear

CLR dst

Operation: dst ← "0"

The destination location is cleared to "0".

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 B0 R

B1 IR

Examples: Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:

CLR 00H → Register 00H = 00H

CLR @01H → Register 01H = 02H, register 02H = 00H

In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H
value to 00H.

In the second example, the statement "CLR @01H" uses Indirect Register (IR) addressing mode
to clear the 02H register value to 00H.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-29

COM — Complement

COM dst

Operation: dst ← NOT dst

The contents of the destination location are complemented (one's complement). All "1s" are
changed to "0s", and vice-versa.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 60 R

61 IR

Examples: Given: R1 = 07H and register 07H = 0F1H:

COM R1 → R1 = 0F8H

COM @R1 → R1 = 07H, register 07H = 0EH

In the first example, the destination working register R1 contains the value 07H (00000111B).
The statement "COM R1" complements all the bits in R1: all logic ones are changed to logic
zeros, and logic zeros to logic ones, leaving the value 0F8H (11111000B).

In the second example, Indirect Register (IR) addressing mode is used to complement the value
of the destination register 07H (11110001B), leaving the new value 0EH (00001110B).

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-30

CP — Compare

CP dst,src

Operation: dst – src

The source operand is compared to (subtracted from) the destination operand, and the
appropriate flags are set accordingly. The contents of both operands are unaffected by the
comparison.

Flags: C: Set if a "borrow" occurred (src > dst); cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 A2 r r
A3 r lr

opc src dst 3 10 A4 R R
A5 R IR

opc dst src 3 10 A6 R IM

Examples: 1. Given: R1 = 02H and R2 = 03H:

CP R1,R2 → Set the C and S flags

The destination working register R1 contains the value 02H and the source register R2
contains the value 03H. The statement "CP R1,R2" subtracts the R2 value
(source/subtrahend) from the R1 value (destination/minuend). Because a "borrow" occurs and
the difference is negative, the C and the S flag values are "1".

2. Given: R1 = 05H and R2 = 0AH:

CP R1,R2

JP UGE,SKIP

INC R1

SKIP LD R3,R1

In this example, the destination working register R1 contains the value 05H which is less than
the contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C
= "1" and the JP instruction does not jump to the SKIP location. After the statement "LD
R3,R1" executes, the value 06H remains in the working register R3.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-31

CPIJE — Compare, Increment, and Jump on Equal

CPIJE dst,src,RA

Operation: If dst – src = "0", PC ← PC + RA

Ir ← Ir + 1

The source operand is compared to (subtracted from) the destination operand. If the result is "0",
the relative address is added to the program counter and control passes to the statement whose
address is now in the program counter. Otherwise, the instruction immediately following the
CPIJE instruction is executed. In either case, the source pointer is incremented by one before the
next instruction is executed.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst RA 3 16/18 C2 r Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 = 02H, R2 = 03H, and register 03H = 02H:

CPIJE R1,@R2,SKIP → R2 = 04H, PC jumps to SKIP location

In this example, the working register R1 contains the value 02H, the working register R2 the
value 03H, and the register 03 contains 02H. The statement "CPIJE R1,@R2,SKIP" compares
the @R2 value 02H (00000010B) to 02H (00000010B). Because the result of the comparison is
equal, the relative address is added to the PC and the PC then jumps to the memory location
pointed to by SKIP. The source register (R2) is incremented by one, leaving a value of 04H.

Remember that the memory location addressed by the CPIJE instruction must be within the
allowed range of + 127 to – 128.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-32

CPIJNE — Compare, Increment, and Jump on Non-Equal

CPIJNE dst,src,RA

Operation: If dst – src _ "0", PC ← PC + RA

Ir ← Ir + 1

The source operand is compared to (subtracted from) the destination operand. If the result is not
"0", the relative address is added to the program counter and control passes to the statement
whose address is now in the program counter. Otherwise the instruction following the CPIJNE
instruction is executed. In either case the source pointer is incremented by one before the next
instruction.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst RA 3 16/18 D2 r Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 = 02H, R2 = 03H, and register 03H = 04H:

CPIJNE R1,@R2,SKIP → R2 = 04H, PC jumps to SKIP location

The working register R1 contains the value 02H, the working register R2 (the source pointer) the
value 03H, and the general register 03 the value 04H. The statement "CPIJNE R1,@R2,SKIP"
subtracts 04H (00000100B) from 02H (00000010B). Because the result of the comparison is non-
equal, the relative address is added to the PC and the PC then jumps to the memory location
pointed to by SKIP. The source pointer register (R2) is also incremented by one, leaving a value
of 04H.

Remember that the memory location addressed by the CPIJNE instruction must be within the
allowed range of + 127 to – 128.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-33

DA — Decimal Adjust

DA dst

Operation: dst ← DA dst

The destination operand is adjusted to form two 4-bit BCD digits following an addition or
subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table
indicates the operation performed (The operation is undefined if the destination operand is not
the result of a valid addition or subtraction of BCD digits):

Instruction Carry
Before DA

Bits 4–7
Value (Hex)

H Flag
Before DA

Bits 0–3
Value (Hex)

Number Added
to Byte

Carry
After DA

0 0–9 0 0–9 00 0

0 0–8 0 A–F 06 0

0 0–9 1 0–3 06 0

ADD 0 A–F 0 0–9 60 1

ADC 0 9–F 0 A–F 66 1

0 A–F 1 0–3 66 1

1 0–2 0 0–9 60 1

1 0–2 0 A–F 66 1

1 0–3 1 0–3 66 1

0 0–9 0 0–9 00 = – 00 0

SUB 0 0–8 1 6–F FA = – 06 0

SBC 1 7–F 0 0–9 A0 = – 60 1

1 6–F 1 6–F 9A = – 66 1

Flags: C: Set if there was a carry from the most significant bit; cleared otherwise (see table).
Z: Set if result is "0"; cleared otherwise.
S: Set if result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 40 R

41 IR

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-34

DA — Decimal Adjust

DA (Continued)

Example: Given: The working register R0 contains the value 15 (BCD), the working register R1 contains
27 (BCD), and the address 27H contains 46 (BCD):

ADD R1,R0 ; C ← "0", H ← "0", Bits 4–7 = 3, bits 0–3 = C, R1 ← 3CH
DA R1 ; R1 ← 3CH + 06

If an addition is performed using the BCD values 15 and 27, the result should be 42. The sum is
incorrect, however, when the binary representations are added in the destination location using
standard binary arithmetic:

0 0 0 1 0 1 0 1 15
+ 0 0 1 0 0 1 1 1 27

0 0 1 1 1 1 0 0 = 3CH

The DA instruction adjusts this result so that the correct BCD representation is obtained:

0 0 1 1 1 1 0 0
+ 0 0 0 0 0 1 1 0

0 1 0 0 0 0 1 0 = 42

Assuming the same values given above, the statements

SUB 27H,R0 ; C ← "0", H ← "0", Bits 4–7 = 3, bits 0–3 = 1
DA @R1 ; @R1 ← 31–0

leave the value 31 (BCD) in the address 27H (@R1).

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-35

DEC — Decrement

DEC dst

Operation: dst ← dst – 1

The contents of the destination operand are decremented by one.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 00 R

01 IR

Examples: Given: R1 = 03H and register 03H = 10H:

DEC R1 → R1 = 02H

DEC @R1 → Register 03H = 0FH

In the first example, if the working register R1 contains the value 03H, the statement "DEC R1"
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by
one, leaving the value 0FH.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-36

DECW — Decrement Word

DECW dst

Operation: dst ← dst – 1

The contents of the destination location (which must be an even address) and the operand
following that location are treated as a single 16-bit value that is decremented by one.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 10 80 RR

81 IR

Examples: Given: R0 = 12H, R1 = 34H, R2 = 30H, register 30H = 0FH, and register 31H = 21H:

DECW RR0 → R0 = 12H, R1 = 33H

DECW @R2 → Register 30H = 0FH, register 31H = 20H

In the first example, the destination register R0 contains the value 12H and the register R1 the
value 34H. The statement "DECW RR0" addresses R0 and the following operand R1 as a 16-bit
word and decrements the value of R1 by one, leaving the value 33H.

NOTE: A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW instruction.
To avoid this problem, it is recommended to use DECW as shown in the following example:

LOOP DECW RR0
LD R2,R1
OR R2,R0
JR NZ,LOOP

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-37

DI — Disable Interrupts

DI

Operation: SYM (0) ← 0

Bit zero of the system mode control register, SYM.0, is cleared to "0", globally disabling all
interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits,
but the CPU will not service them while interrupt processing is disabled.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 8F

Example: Given: SYM = 01H:

DI

If the value of the SYM register is 01H, the statement "DI" leaves the new value 00H in the
register and clears SYM.0 to "0", disabling interrupt processing.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-38

DIV — Divide (Unsigned)

DIV dst,src

Operation: dst ÷ src

dst (UPPER) ← REMAINDER

dst (LOWER) ← QUOTIENT

The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits)
is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of
the destination. When the quotient is ≥ 28, the numbers stored in the upper and lower halves of
the destination for quotient and remainder are incorrect. Both operands are treated as unsigned
integers.

Flags: C: Set if the V flag is set and the quotient is between 28 and 29 – 1; cleared otherwise.
Z: Set if the divisor or the quotient = "0"; cleared otherwise.
S: Set if MSB of the quotient = "1"; cleared otherwise.
V: Set if the quotient is ≥ 28 or if the divisor = "0"; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst 3 28/12 (note) 94 RR R

28/12 (note) 95 RR IR

28/12 (note) 96 RR IM

NOTE: Execution takes 12 cycles if the divide-
by-zero is attempted, otherwise, it takes
28 cycles.

Examples: Given: R0 = 10H, R1 = 03H, R2 = 40H, register 40H = 80H:

DIV RR0,R2 → R0 = 03H, R1 = 40H

DIV RR0,@R2 → R0 = 03H, R1 = 20H

DIV RR0,#20H → R0 = 03H, R1 = 80H

In the first example, the destination working register pair RR0 contains the values 10H (R0) and
03H (R1), and the register R2 contains the value 40H. The statement "DIV RR0,R2" divides the
16-bit RR0 value by the 8-bit value of the R2 (source) register. After the DIV instruction, R0
contains the value 03H and R1 contains 40H. The 8-bit remainder is stored in the upper half of
the destination register RR0 (R0) and the quotient in the lower half (R1).

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-39

DJNZ — Decrement and Jump if Non-Zero

DJNZ r,dst

Operation: r ← r – 1

If r ≠ 0, PC ← PC + dst

The working register being used as a counter is decremented. If the contents of the register are
not logic zero after decrementing, the relative address is added to the program counter and
control passes to the statement whose address is now in the PC. The range of the relative
address is + 127 to – 128, and the original value of the PC is taken to be the address of the
instruction byte following the DJNZ statement.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

r | opc dst 2 12 (jump taken) rA RA

10 (no jump) r = 0 to F

Example: Given: R1 = 02H and LOOP is the label of a relative address:

DJNZ R1,LOOP

DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the
destination operand instead of a numeric relative address value. In the example, the working
register R1 contains the value 02H, and LOOP is the label for a relative address.

The statement "DJNZ R1, LOOP" decrements the register R1 by one, leaving the value 01H.
Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative
address specified by the LOOP label.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-40

EI — Enable Interrupts

EI

Operation: SYM (0) ← 1

The EI instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts
to be serviced as they occur (assuming they have the highest priority). If an interrupt's pending
bit was set while interrupt processing was disabled (by executing a DI instruction), it will be
serviced when the EI instruction is executed.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 9F

Example: Given: SYM = 00H:

EI

If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the
statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.0 is the enable bit for
global interrupt processing.)

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-41

ENTER — Enter

ENTER

Operation: SP ← SP – 2

@SP ← IP

IP ← PC

PC ← @IP

IP ← IP + 2

This instruction is useful when implementing threaded-code languages. The contents of the
instruction pointer are pushed to the stack. The program counter (PC) value is then written to the
instruction pointer. The program memory word that is pointed to by the instruction pointer is
loaded into the PC, and the instruction pointer is incremented by two.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 20 1F

Example: The diagram below shows an example of how to use an ENTER statement.

0050IP

0022SP

22 Data

Address Data

0040PC 40
41
42
43

Enter
Address H
Address L
Address H

Address Data

1F
01
10

Memory

0043IP

0020SP

20
21
22

IPH
IPL
Data

Address Data

0110PC 40
41
42
43

Enter
Address H
Address L
Address H

Address Data

1F
01
10

Memory

00
50

Stack Stack

110 Routine

Before After

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-42

EXIT — Exit

EXIT

Operation: IP ← @SP

SP ← SP + 2

PC ← @IP

IP ← IP + 2

This instruction is useful when implementing threaded-code languages. The stack value is
popped and loaded into the instruction pointer. The program memory word that is pointed to by
the instruction pointer is then loaded into the program counter, and the instruction pointer is
incremented by two.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 22 2F

Example: The diagram below shows an example of how to use an EXIT statement.

0050IP

0020SP

Address Data

0140PC

Address Data

Memory

0052IP

0022SP

Address Data

0060PC

Address Data

Memory

Stack Stack

Before After

22 Data

20
21
22

IPH
IPL
Data

00
50

50
51

140

PCL old
PCH

Exit

60
00

2F

60 Main

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-43

IDLE — Idle Operation

IDLE

Operation: (See description)

The IDLE instruction stops the CPU clock while allowing the system clock oscillation to continue.
Idle mode can be released by an interrupt request (IRQ) or an external reset operation.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc 1 3 6F – –

Example: The instruction IDLE stops the CPU clock but it does not stop the system clock.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-44

INC — Increment

INC dst

Operation: dst ← dst + 1

The contents of the destination operand are incremented by one.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

dst | opc 1 6 rE r

r = 0 to F

opc dst 2 6 20 R

21 IR

Examples: Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:

INC R0 → R0 = 1CH

INC 00H → Register 00H = 0DH

INC @R0 → R0 = 1BH, register 01H = 10H

In the first example, if the destination working register R0 contains the value 1BH, the statement
"INC R0" leaves the value 1CH in that same register.

The second example shows the effect an INC instruction has on the register at the location 00H,
assuming that it contains the value 0CH.

In the third example, INC is used in Indirect Register (IR) addressing mode to increment the
value of the register 1BH from 0FH to 10H.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-45

INCW — Increment Word

INCW dst

Operation: dst ← dst + 1

The contents of the destination (which must be an even address) and the byte following that
location are treated as a single 16-bit value that is incremented by one.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 10 A0 RR

A1 IR

Examples: Given: R0 = 1AH, R1 = 02H, register 02H = 0FH, and register 03H = 0FFH:

INCW RR0 → R0 = 1AH, R1 = 03H

INCW @R1 → Register 02H = 10H, register 03H = 00H

In the first example, the working register pair RR0 contains the value 1AH in the register R0 and
02H in the register R1. The statement "INCW RR0" increments the 16-bit destination by one,
leaving the value 03H in the register R1. In the second example, the statement "INCW @R1"
uses Indirect Register (IR) addressing mode to increment the contents of the general register
03H from 0FFH to 00H and the register 02H from 0FH to 10H.

NOTE: A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an INCW
instruction. To avoid this problem, it is recommended to use the INCW instruction as shown in the
following example:

LOOP: INCW RR0
LD R2,R1
OR R2,R0
JR NZ,LOOP

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-46

IRET — Interrupt Return

IRET IRET (Normal) IRET (Fast)

Operation: FLAGS ← @SP PC ↔ IP
SP ← SP + 1 FLAGS ← FLAGS'
PC ← @SP FIS ← 0
SP ← SP + 2
SYM(0) ← 1

This instruction is used at the end of an interrupt service routine. It restores the flag register and
the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the
fast interrupt status bit (FIS, bit one of the FLAGS register, 0D5H) is cleared (= "0"). If a fast
interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.

Flags: All flags are restored to their original settings (that is, the settings before the interrupt occurred).

Format:

IRET
(Normal)

Bytes Cycles Opcode
(Hex)

opc 1 16 BF

IRET
(Fast)

Bytes Cycles Opcode
(Hex)

opc 1 6 BF

Example: In the figure below, the instruction pointer is initially loaded with 100H in the main program before
interrupts are enabled. When an interrupt occurs, the program counter and the instruction pointer
are swapped. This causes the PC to jump to the address 100H and the IP to keep the return
address. The last instruction in the service routine is normally a jump to IRET at the address
FFH. This loads the instruction pointer with 100H "again" and causes the program counter to
jump back to the main program. Now, the next interrupt can occur and the IP is still correct at
100H.

NOTE: In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay attention to
the order of the last two instructions. The IRET cannot be immediately proceeded by an instruction which
clears the interrupt status (as with a reset of the IPR register).

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-47

JP — Jump

JP cc,dst (Conditional)

JP dst (Unconditional)

Operation: If cc is true, PC ← dst

The conditional JUMP instruction transfers program control to the destination address if the
condition specified by the condition code (cc) is true, otherwise, the instruction following the JP
instruction is executed. The unconditional JP simply replaces the contents of the PC with the
contents of the specified register pair. Control then passes to the statement addressed by the PC.

Flags: No flags are affected.

Format: (1)

(2)
Bytes Cycles Opcode

(Hex)
Addr Mode

dst

cc | opc dst 3 10/12 (3) ccD DA

cc = 0 to F

opc dst 2 10 30 IRR

NOTES:
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.
2. In the first byte of the 3-byte instruction format (conditional jump), the condition code and the opcode

are both four bits.
3. For a conditional jump, execution time is 12 cycles if the jump is taken or 10 cycles if it is not taken.

Examples: Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:

JP C,LABEL_W → LABEL_W = 1000H, PC = 1000H

JP @00H → PC = 0120H

The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to
that location. Had the carry flag not been set, control would then have passed to the statement
immediately following the JP instruction.

The second example shows an unconditional JP. The statement "JP @00" replaces the contents
of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-48

JR — Jump Relative

JR cc,dst

Operation: If cc is true, PC ← PC + dst

If the condition specified by the condition code (cc) is true, the relative address is added to the
program counter and control passes to the statement whose address is now in the program
counter, otherwise, the instruction following the JR instruction is executed. (See the list of
condition codes at the beginning of this chapter).

The range of the relative address is +127, –128, and the original value of the program counter is
taken to be the address of the first instruction byte following the JR statement.

Flags: No flags are affected.

Format:

(1)
Bytes Cycles Opcode

(Hex)
Addr Mode

dst

cc | opc dst 2 10/12 (2) ccB RA

cc = 0 to F

NOTES:
1. In the first byte of the two-byte instruction format, the condition code and the opcode are each four

bits in length.
2. Instruction execution time is 12 cycles if the jump is taken or 10 cycles if it is not taken.

Example: Given: The carry flag = "1" and LABEL_X = 1FF7H:

JR C,LABEL_X → PC = 1FF7H

If the carry flag is set (that is, if the condition code is “true”), the statement "JR C,LABEL_X" will
pass control to the statement whose address is currently in the program counter. Otherwise, the
program instruction following the JR will be executed.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-49

LD — Load

LD dst,src

Operation: dst ← src

The contents of the source are loaded into the destination. The source's contents are unaffected.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

dst | opc src 2 6 rC r IM

6 r8 r R

src | opc dst 2 6 r9 R r

r = 0 to F

opc dst | src 2 6 C7 r lr

6 D7 Ir r

opc src dst 3 10 E4 R R

10 E5 R IR

opc dst src 3 10 E6 R IM

10 D6 IR IM

opc src dst 3 10 F5 IR R

opc dst | src x 3 10 87 r x [r]

opc src | dst x 3 10 97 x [r] r

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-50

LD — Load

LD (Continued)

Examples: Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H,
register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:

LD R0,#10H → R0 = 10H

LD R0,01H → R0 = 20H, register 01H = 20H

LD 01H,R0 → Register 01H = 01H, R0 = 01H

LD R1,@R0 → R1 = 20H, R0 = 01H

LD @R0,R1 → R0 = 01H, R1 = 0AH, register 01H = 0AH

LD 00H,01H → Register 00H = 20H, register 01H = 20H

LD 02H,@00H → Register 02H = 20H, register 00H = 01H

LD 00H,#0AH → Register 00H = 0AH

LD @00H,#10H → Register 00H = 01H, register 01H = 10H

LD @00H,02H → Register 00H = 01H, register 01H = 02, register 02H = 02H

LD R0,#LOOP[R1] → R0 = 0FFH, R1 = 0AH

LD #LOOP[R0],R1 → Register 31H = 0AH, R0 = 01H, R1 = 0AH

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-51

LDB — Load Bit

LDB dst,src.b

LDB dst.b,src

Operation: dst(0) ← src(b)

or

dst(b) ← src(0)

The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the
source is loaded into the specified bit of the destination. No other bits of the destination are
affected. The source is unaffected.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | b | 0 src 3 10 47 r0 Rb

opc src | b | 1 dst 3 10 47 Rb r0

NOTE: In the second byte of the instruction format, the destination (or the source) address is four bits, the
bit address "b" is three bits, and the LSB address value is one bit in length.

Examples: Given: R0 = 06H and general register 00H = 05H:

LDB R0,00H.2 → R0 = 07H, register 00H = 05H

LDB 00H.0,R0 → R0 = 06H, register 00H = 04H

In the first example, the destination working register R0 contains the value 06H and the source
general register 00H the value 05H. The statement "LD R0,00H.2" loads the bit two value of the
00H register into bit zero of the R0 register, leaving the value 07H in the register R0.

In the second example, 00H is the destination register. The statement "LD 00H.0,R0" loads bit
zero of the register R0 to the specified bit (bit zero) of the destination register, leaving 04H in the
general register 00H.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-52

LDC/LDE — Load Memory

LDC dst,src

LDE dst,src

Operation: dst ← src

This instruction loads a byte from program or data memory into a working register or vice-versa.
The source values are unaffected. LDC refers to program memory and LDE to data memory. The
assembler makes "Irr" or "rr" values an even number for program memory and an odd number
for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

1. opc dst | src 2 12 C3 r Irr

2. opc src | dst 2 12 D3 Irr r

3. opc dst | src XS 3 18 E7 r XS [rr]

4. opc src | dst XS 3 18 F7 XS [rr] r

5. opc dst | src XLL XLH 4 20 A7 r XL [rr]

6. opc src | dst XLL XLH 4 20 B7 XL [rr] r

7. opc dst | 0000 DAL DAH 4 20 A7 r DA

8. opc src | 0000 DAL DAH 4 20 B7 DA r

9. opc dst | 0001 DAL DAH 4 20 A7 r DA

10. opc src | 0001 DAL DAH 4 20 B7 DA r

NOTES:
1. The source (src) or the working register pair [rr] for formats 5 and 6 cannot use the register pair 0–1.
2. For the formats 3 and 4, the destination '"XS [rr]" and the source address "XS [rr]" are both one byte.
3. For the formats 5 and 6, the destination "XL [rr]" and the source address "XL [rr]" are both two bytes.
4. The DA and the r source values for the formats 7 and 8 are used to address program memory. The second set of

values, used in the formats 9 and 10, are used to address data memory.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-53

LDC/LDE — Load Memory

LDC/LDE (Continued)

Examples: Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H; Program memory locations
0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data memory
locations 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H = 98H:

LDC R0,@RR2 ; R0 ← contents of program memory location 0104H;
; R0 = 1AH, R2 = 01H, R3 = 04H

LDE R0,@RR2 ; R0 ← contents of external data memory location 0104H;
; R0 = 2AH, R2 = 01H, R3 = 04H

LDC @RR2,R0 ; 11H (contents of R0) is loaded into program memory
; location 0104H (RR2); R0, R2, R3 → no change

LDE @RR2,R0 ; 11H (contents of R0) is loaded into external data memory
; location 0104H (RR2); R0, R2, R3 → no change

LDC R0,#01H[RR2] ; R0 ← contents of program memory location 0105H
; (01H + RR2); R0 = 6DH, R2 = 01H, R3 = 04H

LDE R0,#01H[RR2] ; R0 ← contents of external data memory location 0105H
; (01H + RR2); R0 = 7DH, R2 = 01H, R3 = 04H

LDC #01H[RR2],R0 ; 11H (contents of R0) is loaded into program memory location
; 0105H (01H + 0104H)

LDE #01H[RR2],R0 ; 11H (contents of R0) is loaded into external data memory
; location 0105H (01H + 0104H)

LDC R0,#1000H[RR2] ; R0 ← contents of program memory location 1104H
; (1000H + 0104H); R0 = 88H, R2 = 01H, R3 = 04H

LDE R0,#1000H[RR2] ; R0 ← contents of external data memory location 1104H
; (1000H + 0104H); R0 = 98H, R2 = 01H, R3 = 04H

LDC R0,1104H ; R0 ← contents of program memory location 1104H; R0 = 88H

LDE R0,1104H ; R0 ← contents of external data memory location 1104H;
; R0 = 98H

LDC 1105H,R0 ; 11H (contents of R0) is loaded into program memory location
; 1105H; (1105H) ← 11H

LDE 1105H,R0 ; 11H (contents of R0) is loaded into external data memory
; location 1105H; (1105H) ← 11H

NOTE: The LDC and the LCE instructions are not supported by masked ROM type devices.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-54

LDCD/LDED — Load Memory and Decrement

LDCD dst,src

LDED dst,src

Operation: dst ← src

rr ← rr – 1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then decremented. The contents of the source are unaffected.

LDCD refers to program memory and LDED refers to external data memory. The assembler
makes "Irr" an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 16 E2 r Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and
external data memory location 1033H = 0DDH:

LDCD R8,@RR6 ; 0CDH (contents of program memory location 1033H) is loaded
; into R8 and RR6 is decremented by one;
; R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 ← RR6 – 1)

LDED R8,@RR6 ; 0DDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is decremented by one (RR6 ← RR6 – 1);
; R8 = 0DDH, R6 = 10H, R7 = 32H

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-55

LDCI/LDEI — Load Memory and Increment

LDCI dst,src

LDEI dst,src

Operation: dst ← src

rr ← rr + 1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then incremented automatically. The contents of the source are unaffected.

LDCI refers to program memory and LDEI refers to external data memory. The assembler makes
"Irr" an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 16 E3 r Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and
1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:

LDCI R8,@RR6 ; 0CDH (contents of program memory location 1033H) is loaded
; into R8 and RR6 is incremented by one (RR6 ← RR6 + 1);
; R8 = 0CDH, R6 = 10H, R7 = 34H

LDEI R8,@RR6 ; 0DDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is incremented by one (RR6 ← RR6 + 1);
; R8 = 0DDH, R6 = 10H, R7 = 34H

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-56

LDCPD/LDEPD — Load Memory with Pre-Decrement

LDCPD dst,src

LDEPD dst,src

Operation: rr ← rr – 1

dst ← src

These instructions are used for block transfers of data from program or data memory to the
register file. The address of the memory location is specified by a working register pair and is first
decremented. The contents of the source location are then loaded into the destination location.
The contents of the source are unaffected.

LDCPD refers to program memory and LDEPD refers to external data memory. The assembler
makes "Irr" an even number for program memory and an odd number for external data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src | dst 2 16 F2 Irr r

Examples: Given: R0 = 77H, R6 = 30H, and R7 = 00H:

LDCPD @RR6,R0 ; (RR6 ← RR6 – 1)
; 77H (the contents of R0) is loaded into program memory
; location 2FFFH (3000H – 1H);
; R0 = 77H, R6 = 2FH, R7 = 0FFH

LDEPD @RR6,R0 ; (RR6 ← RR6 – 1)
; 77H (the contents of R0) is loaded into external data memory
; location 2FFFH (3000H – 1H);
; R0 = 77H, R6 = 2FH, R7 = 0FFH

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-57

LDCPI/LDEPI — Load Memory with Pre-Increment

LDCPI dst,src

LDEPI dst,src

Operation: rr ← rr + 1

dst ← src

These instructions are used for block transfers of data from program or data memory to the
register file. The address of the memory location is specified by a working register pair and is first
incremented. The contents of the source location are loaded into the destination location. The
contents of the source are unaffected.

LDCPI refers to program memory and LDEPI refers to external data memory. The assembler
makes "Irr" an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src | dst 2 16 F3 Irr r

Examples: Given: R0 = 7FH, R6 = 21H, and R7 = 0FFH:

LDCPI @RR6,R0 ; (RR6 ← RR6 + 1)
; 7FH (the contents of R0) is loaded into program memory
; location 2200H (21FFH + 1H);
; R0 = 7FH, R6 = 22H, R7 = 00H

LDEPI @RR6,R0 ; (RR6 ← RR6 + 1)
; 7FH (the contents of R0) is loaded into external data memory
; location 2200H (21FFH + 1H);
; R0 = 7FH, R6 = 22H, R7 = 00H

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-58

LDW — Load Word

LDW dst,src

Operation: dst ← src

The contents of the source (a word) are loaded into the destination. The contents of the source
are unaffected.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst 3 10 C4 RR RR

10 C5 RR IR

opc dst src 4 12 C6 RR IML

Examples: Given: R4 = 06H, R5 = 1CH, R6 = 05H, R7 = 02H, register 00H = 1AH,
register 01H = 02H, register 02H = 03H, and register 03H = 0FH:

LDW RR6,RR4 → R6 = 06H, R7 = 1CH, R4 = 06H, R5 = 1CH

LDW 00H,02H → Register 00H = 03H, register 01H = 0FH,
register 02H = 03H, register 03H = 0FH

LDW RR2,@R7 → R2 = 03H, R3 = 0FH,

LDW 04H,@01H → Register 04H = 03H, register 05H = 0FH

LDW RR6,#1234H → R6 = 12H, R7 = 34H

LDW 02H,#0FEDH → Register 02H = 0FH, register 03H = 0EDH

In the second example, please note that the statement "LDW 00H,02H" loads the contents of the
source word 02H and 03H into the destination word 00H and 01H. This leaves the value 03H in
general register 00H and the value 0FH in the register 01H.

Other examples show how to use the LDW instruction with various addressing modes and
formats.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-59

MULT — Multiply (Unsigned)

MULT dst,src

Operation: dst ← dst × src

The 8-bit destination operand (the even number register of the register pair) is multiplied by the
source operand (8 bits) and the product (16 bits) is stored in the register pair specified by the
destination address. Both operands are treated as unsigned integers.

Flags: C: Set if the result is > 255; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if MSB of the result is a "1"; cleared otherwise.
V: Cleared.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst 3 24 84 RR R

24 85 RR IR
24 86 RR IM

Examples: Given: Register 00H = 20H, register 01H = 03H, register 02H = 09H, register 03H = 06H:

MULT 00H, 02H → Register 00H = 01H, register 01H = 20H, register 02H = 09H

MULT 00H, @01H → Register 00H = 00H, register 01H = 0C0H

MULT 00H, #30H → Register 00H = 06H, register 01H = 00H

In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in
the register 00H of the register pair 00H, 01H) by the source register 02H operand (09H). The
16-bit product, 0120H, is stored in the register pair 00H, 01H.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-60

NEXT — Next

NEXT

Operation: PC ← @IP

IP ← IP + 2

The NEXT instruction is useful when implementing threaded-code languages. The program
memory word that is pointed to by the instruction pointer is loaded into the program counter. The
instruction pointer is then incremented by two.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 14 0F

Example: The following diagram shows an example of how to use the NEXT instruction.

Data

01
30

Before After

0045IP

Address Data

0130PC 43
44
45

Address H
Address L
Address H

Address Data

Memory

130 Routine

0043IP

Address Data

0120PC 43
44
45

Address H
Address L
Address H

Address Data

Memory

120 Next

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-61

NOP — No Operation

NOP

Operation: No action is performed when the CPU executes this instruction. Typically, one or more NOPs are
executed in sequence in order to affect a timing delay of variable duration.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 FF

Example: When the instruction NOP is executed in a program, no operation occurs. Instead, there happens
a delay in instruction execution time which is approximately one machine cycle per each NOP
instruction encountered.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-62

OR — Logical OR

OR dst,src

Operation: dst ← dst OR src

The source operand is logically ORed with the destination operand and the result is stored in the
destination. The contents of the source are unaffected. The OR operation results in a "1" being
stored whenever either of the corresponding bits in the two operands is a "1", otherwise, a "0" is
stored.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 42 r r

6 43 r lr

opc src dst 3 10 44 R R

10 45 R IR

opc dst src 3 10 46 R IM

Examples: Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and
register 08H = 8AH:

OR R0,R1 → R0 = 3FH, R1 = 2AH

OR R0,@R2 → R0 = 37H, R2 = 01H, register 01H = 37H

OR 00H,01H → Register 00H = 3FH, register 01H = 37H

OR 01H,@00H → Register 00H = 08H, register 01H = 0BFH

OR 00H,#02H → Register 00H = 0AH

In the first example, if the working register R0 contains the value 15H and the register R1 the
value 2AH, the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores
the result (3FH) in the destination register R0.

Other examples show the use of the logical OR instruction with various addressing modes and
formats.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-63

POP — Pop From Stack

POP dst

Operation: dst ← @SP

SP ← SP + 1

The contents of the location addressed by the stack pointer are loaded into the destination. The
stack pointer is then incremented by one.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 10 50 R

10 51 IR

Examples: Given: Register 00H = 01H, register 01H = 1BH, SPH (0D8H) = 00H, SPL (0D9H) = 0FBH,
and stack register 0FBH = 55H:

POP 00H → Register 00H = 55H, SP = 00FCH

POP @00H → Register 00H = 01H, register 01H = 55H, SP = 00FCH

In the first example, the general register 00H contains the value 01H. The statement "POP 00H"
loads the contents of the location 00FBH (55H) into the destination register 00H and then
increments the stack pointer by one. The register 00H then contains the value 55H and the SP
points to the location 00FCH.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-64

POPUD — Pop User Stack (Decrementing)

POPUD dst,src

Operation: dst ← src

IR ← IR – 1

This instruction is used for user-defined stacks in the register file. The contents of the register file
location addressed by the user stack pointer are loaded into the destination. The user stack
pointer is then decremented.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst 3 10 92 R IR

Example: Given: Register 00H = 42H (user stack pointer register), register 42H = 6FH, and
register 02H = 70H:

POPUD 02H,@00H → Register 00H = 41H, register 02H = 6FH, register 42H = 6FH

If the general register 00H contains the value 42H and the register 42H the value 6FH, the
statement "POPUD 02H,@00H" loads the contents of the register 42H into the destination
register 02H. The user stack pointer is then decremented by one, leaving the value 41H.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-65

POPUI — Pop User Stack (Incrementing)

POPUI dst,src

Operation: dst ← src

IR ← IR + 1

The POPUI instruction is used for user-defined stacks in the register file. The contents of the
register file location addressed by the user stack pointer are loaded into the destination. The user
stack pointer is then incremented.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst 3 10 93 R IR

Example: Given: Register 00H = 01H and register 01H = 70H:

POPUI 02H,@00H → Register 00H = 02H, register 01H = 70H, register 02H = 70H

If the general register 00H contains the value 01H and the register 01H the value 70H, the
statement "POPUI 02H,@00H" loads the value 70H into the destination general register 02H.
The user stack pointer (the register 00H) is then incremented by one, changing its value from
01H to 02H.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-66

PUSH — Push to Stack

PUSH src

Operation: SP ← SP – 1

@SP ← src

A PUSH instruction decrements the stack pointer value and loads the contents of the source (src)
into the location addressed by the decremented stack pointer. The operation then adds the new
value to the top of the stack.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc src 2 10 (internal clock) 70 R

12 (external clock)

12 (internal clock)
14 (external clock) 71 IR

Examples: Given: Register 40H = 4FH, register 4FH = 0AAH, SPH = 00H, and SPL = 00H:

PUSH 40H → Register 40H = 4FH, stack register 0FFH = 4FH,
SPH = 0FFH, SPL = 0FFH

PUSH @40H → Register 40H = 4FH, register 4FH = 0AAH, stack register
0FFH = 0AAH, SPH = 0FFH, SPL = 0FFH

In the first example, if the stack pointer contains the value 0000H, and the general register 40H
the value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to 0FFFFH.
It then loads the contents of the register 40H into the location 0FFFFH and adds this new value
to the top of the stack.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-67

PUSHUD — Push User Stack (Decrementing)

PUSHUD dst,src

Operation: IR ← IR – 1

dst ← src

This instruction is used to address user-defined stacks in the register file. PUSHUD decrements
the user stack pointer and loads the contents of the source into the register addressed by the
decremented stack pointer.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst src 3 10 82 IR R

Example: Given: Register 00H = 03H, register 01H = 05H, and register 02H = 1AH:

PUSHUD @00H,01H → Register 00H = 02H, register 01H = 05H, register 02H = 05H

If the user stack pointer (the register 00H, for example) contains the value 03H, the statement
"PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The
01H register value, 05H, is then loaded into the register addressed by the decremented user
stack pointer.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-68

PUSHUI — Push User Stack (Incrementing)

PUSHUI dst,src

Operation: IR ← IR + 1

dst ← src

This instruction is used for user-defined stacks in the register file. PUSHUI increments the user
stack pointer and then loads the contents of the source into the register location addressed by the
incremented user stack pointer.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst src 3 10 83 IR R

Example: Given: Register 00H = 03H, register 01H = 05H, and register 04H = 2AH:

PUSHUI @00H,01H → Register 00H = 04H, register 01H = 05H, register 04H = 05H

If the user stack pointer (the register 00H, for example) contains the value 03H, the statement
"PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H
register value, 05H, is then loaded into the location addressed by the incremented user stack
pointer.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-69

RCF — Reset Carry Flag

RCF RCF

Operation: C ← 0

The carry flag is cleared to logic zero, regardless of its previous value.

Flags: C: Cleared to "0".

No other flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 CF

Example: Given: C = "1" or "0":

The instruction RCF clears the carry flag (C) to logic zero.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-70

RET — Return

RET

Operation: PC ← @SP

SP ← SP + 2

The RET instruction is normally used to return to the previously executed procedure at the end of
the procedure entered by a CALL instruction. The contents of the location addressed by the stack
pointer are popped into the program counter. The next statement that is executed is the one that
is addressed by the new program counter value.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 14 AF

Example: Given: SP = 00FCH, (SP) = 101AH, and PC = 1234:

RET → PC = 101AH, SP = 00FEH

The RET instruction pops the contents of the stack pointer location 00FCH (10H) into the high
byte of the program counter. The stack pointer then pops the value in the location 00FEH (1AH)
into the PC's low byte and the instruction at the location 101AH is executed. The stack pointer
now points to the memory location 00FEH.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-71

RL — Rotate Left

RL dst

Operation: C ← dst (7)

dst (0) ← dst (7)

dst (n + 1) ← dst (n), n = 0–6

The contents of the destination operand are rotated left one bit position. The initial value of bit 7
is moved to the bit zero (LSB) position and also replaces the carry flag, as shown in the figure
below.

7 0

C

Flags: C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 90 R

6 91 IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:

RL 00H → Register 00H = 55H, C = "1"

RL @01H → Register 01H = 02H, register 02H = 2EH, C = "0"

In the first example, if the general register 00H contains the value 0AAH (10101010B), the
statement "RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H
(01010101B) and setting the carry (C) and the overflow (V) flags.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-72

RLC — Rotate Left through Carry

RLC dst

Operation: dst (0) ← C

C ← dst (7)

dst (n + 1) ← dst (n), n = 0–6

The contents of the destination operand with the carry flag are rotated left one bit position. The
initial value of bit 7 replaces the carry flag (C), and the initial value of the carry flag replaces bit
zero.

7 0

C

Flags: C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination is changed during the

rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 10 R

6 11 IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":

RLC 00H → Register 00H = 54H, C = "1"

RLC @01H → Register 01H = 02H, register 02H = 2EH, C = "0"

In the first example, if the general register 00H has the value 0AAH (10101010B), the statement
"RLC 00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag
and the initial value of the C flag replaces bit zero of the register 00H, leaving the value 55H
(01010101B). The MSB of the register 00H resets the carry flag to "1" and sets the overflow flag.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-73

RR — Rotate Right

RR dst

Operation: C ← dst (0)

dst (7) ← dst (0)

dst (n) ← dst (n + 1), n = 0–6

The contents of the destination operand are rotated right one bit position. The initial value of bit
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

7 0

C

Flags: C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination is changed during the

rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 E0 R

6 E1 IR

Examples: Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:

RR 00H → Register 00H = 98H, C = "1"

RR @01H → Register 01H = 02H, register 02H = 8BH, C = "1"

In the first example, if the general register 00H contains the value 31H (00110001B), the
statement "RR 00H" rotates this value one bit position to the right. The initial value of bit zero is
moved to bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit
zero also resets the C flag to "1" and the sign flag and the overflow flag are also set to "1".

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-74

RRC — Rotate Right through Carry

RRC dst

Operation: dst (7) ← C

C ← dst (0)

dst (n) ← dst (n + 1), n = 0–6

The contents of the destination operand and the carry flag are rotated right one bit position. The
initial value of bit zero (LSB) replaces the carry flag, and the initial value of the carry flag
replaces
bit 7 (MSB).

7 0

C

Flags: C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
Z: Set if the result is "0" cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination is changed during the

rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 C0 R

6 C1 IR

Examples: Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":

RRC 00H → Register 00H = 2AH, C = "1"

RRC @01H → Register 01H = 02H, register 02H = 0BH, C = "1"

In the first example, if the general register 00H contains the value 55H (01010101B), the
statement "RRC 00H" rotates this value one bit position to the right. The initial value of bit zero
("1") replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the
new value 2AH (00101010B) in the destination register 00H. The sign flag and the overflow flag
are both cleared to "0".

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-75

SB0 — Select Bank 0

SB0

Operation: BANK ← 0

The SB0 instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero,
selecting the bank 0 register addressing in the set 1 area of the register file.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 4F

Example: The statement SB0 clears FLAGS.0 to "0", selecting the bank 0 register addressing.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-76

SB1 — Select Bank 1

SB1

Operation: BANK ← 1

The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one,
selecting the bank 1 register addressing in the set 1 area of the register file.

Note: Bank 1 is not implemented in some KS88-series microcontrollers.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 5F

Example: The statement SB1 sets FLAGS.0 to "1", selecting the bank 1 register addressing (if bank 1 is
implemented in the microcontroller’s internal register file).

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-77

SBC — Subtract with Carry

SBC dst,src

Operation: dst ← dst – src – c

The source operand, along with the current value of the carry flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the source are
unaffected. Subtraction is performed by adding the two's-complement of the source operand to
the destination operand. In multiple precision arithmetic, this instruction permits the carry
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of
high-order operands.

Flags: C: Set if a borrow occurred (src > dst); cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign

of the result is the same as the sign of the source; cleared otherwise.
D: Always set to "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;

set otherwise, indicating a "borrow".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 32 r r

6 33 r lr

opc src dst 3 10 34 R R

10 35 R IR

opc dst src 3 10 36 R IM

Examples: Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and register
03H = 0AH:

SBC R1,R2 → R1 = 0CH, R2 = 03H

SBC R1,@R2 → R1 = 05H, R2 = 03H, register 03H = 0AH

SBC 01H,02H → Register 01H = 1CH, register 02H = 03H

SBC 01H,@02H → Register 01H = 15H, register 02H = 03H, register 03H = 0AH

SBC 01H,#8AH → Register 01H = 95H; C, S, and V = "1"

In the first example, if the working register R1 contains the value 10H and the register R2 the
value 03H, the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value
("1") from the destination (10H) and then stores the result (0CH) in the register R1.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-78

SCF — Set Carry Flag

SCF

Operation: C ← 1

The carry flag (C) is set to logic one, regardless of its previous value.

Flags: C: Set to "1".

No other flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 DF

Example: The statement SCF sets the carry flag to “1”.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-79

SR — Shift Right Arithmetic

SRA dst

Operation: dst (7) ← dst (7)

C ← dst (0)

dst (n) ← dst (n + 1), n = 0–6

An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into the
bit position 6.

7 0

C

6

Flags: C: Set if the bit shifted from the LSB position (bit zero) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 D0 R

6 D1 IR

Examples: Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":

SRA 00H → Register 00H = 0CD, C = "0"

SRA @02H → Register 02H = 03H, register 03H = 0DEH, C = "0"

In the first example, if the general register 00H contains the value 9AH (10011010B), the
statement "SRA 00H" shifts the bit values in the register 00H right one bit position. Bit zero ("0")
clears the C flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged).
This leaves the value 0CDH (11001101B) in the destination register 00H.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-80

SRP/SRP0/SRP1 — Set Register Pointer

SRP src

SRP0 src

SRP1 src

Operation: If src (1) = 1 and src (0) = 0 then: RP0 (3–7) ← src (3–7)

If src (1) = 0 and src (0) = 1 then: RP1 (3–7) ← src (3–7)

If src (1) = 0 and src (0) = 0 then: RP0 (4–7) ← src (4–7),

RP0 (3) ← 0

RP1 (4–7) ← src (4–7),

RP1 (3) ← 1

The source data bits one and zero (LSB) determine whether to write one or both of the register
pointers, RP0 and RP1. Bits 3–7 of the selected register pointer are written unless both register
pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
src

opc src 2 6 31 IM

Examples: The statement SRP #40H sets the register pointer 0 (RP0) at the location 0D6H to 40H and the
register pointer 1 (RP1) at the location 0D7H to 48H.

The statement "SRP0 #50H" would set RP0 to 50H, and the statement "SRP1 #68H" would set
RP1 to 68H.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-81

STOP — Stop Operation

STOP

Operation:

After loading the enable value #10100101B into Stop control register, the STOP instruction stops
both the CPU clock and the system clock, causing the microcontroller to enter Stop mode. During
Stop mode, the contents of on-chip CPU registers, peripheral registers, and I/O port control and
data registers are retained.

Stop mode can be released by an external reset operation or by external interrupts. For the reset
operation, the RESET pin must be held to Low level until the required oscillation stabilization
interval has elapsed.

After released from Stop mode, the value of STOPCON is cleared automatically.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc 1 3 7F – –

Example: LD STOPCON, #0A5H ; Enable STOPCON

STOP ; halts all microcontroller operations.
NOT
NOT

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-82

SUB — Subtract

SUB dst,src

Operation: dst ← dst – src

The source operand is subtracted from the destination operand and the result is stored in the
destination. The contents of the source are unaffected. Subtraction is performed by adding the
two's complement of the source operand to the destination operand.

Flags: C: Set if a "borrow" occurred; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the

sign of the result is of the same as the sign of the source operand; cleared otherwise.
D: Always set to "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;

set otherwise indicating a "borrow".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 22 r r

6 23 r lr

opc src dst 3 10 24 R R

10 25 R IR

opc dst src 3 10 26 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

SUB R1,R2 → R1 = 0FH, R2 = 03H

SUB R1,@R2 → R1 = 08H, R2 = 03H

SUB 01H,02H → Register 01H = 1EH, register 02H = 03H

SUB 01H,@02H → Register 01H = 17H, register 02H = 03H

SUB 01H,#90H → Register 01H = 91H; C, S, and V = "1"

SUB 01H,#65H → Register 01H = 0BCH; C and S = "1", V = "0"

In the first example, if the working register R1 contains the value 12H and if the register R2
contains the value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the
destination value (12H) and stores the result (0FH) in the destination register R1.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-83

SWAP — Swap Nibbles

SWAP dst

Operation: dst (0 – 3) ↔ dst (4 – 7)

The contents of the lower four bits and the upper four bits of the destination operand are
swapped.

7 04 3

Flags: C: Undefined.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 8 F0 R

8 F1 IR

Examples: Given: Register 00H = 3EH, register 02H = 03H, and register 03H = 0A4H:

SWAP 00H → Register 00H = 0E3H

SWAP @02H → Register 02H = 03H, register 03H = 4AH

In the first example, if the general register 00H contains the value 3EH (00111110B), the
statement "SWAP 00H" swaps the lower and the upper four bits (nibbles) in the 00H register,
leaving the value 0E3H (11100011B).

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-84

TCM — Test Complement under Mask

TCM dst,src

Operation: (NOT dst) AND src

This instruction tests selected bits in the destination operand for a logic one value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask). The TCM statement complements the destination operand, which is then ANDed with the
source mask. The zero (Z) flag can then be checked to determine the result. The destination and
the source operands are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 62 r r

6 63 r lr

opc src dst 3 10 64 R R

10 65 R IR

opc dst src 3 10 66 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

TCM R0,R1 → R0 = 0C7H, R1 = 02H, Z = "1"

TCM R0,@R1 → R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"

TCM 00H,01H → Register 00H = 2BH, register 01H = 02H, Z = "1"

TCM 00H,@01H → Register 00H = 2BH, register 01H = 02H,
register 02H = 23H, Z = "1"

TCM 00H,#34 → Register 00H = 2BH, Z = "0"

In the first example, if the working register R0 contains the value 0C7H (11000111B) and the
register R1 the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the
destination register for a "1" value. Because the mask value corresponds to the test bit, the Z flag
is set to logic one and can be tested to determine the result of the TCM operation.

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-85

TM — Test under Mask

TM dst,src

Operation: dst AND src

This instruction tests selected bits in the destination operand for a logic zero value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to
determine the result. The destination and the source operands are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 72 r r

6 73 r lr

opc src dst 3 10 74 R R

10 75 R IR

opc dst src 3 10 76 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

TM R0,R1 → R0 = 0C7H, R1 = 02H, Z = "0"

TM R0,@R1 → R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"

TM 00H,01H → Register 00H = 2BH, register 01H = 02H, Z = "0"

TM 00H,@01H → Register 00H = 2BH, register 01H = 02H,
register 02H = 23H, Z = "0"

TM 00H,#54H → Register 00H = 2BH, Z = "1"

In the first example, if the working register R0 contains the value 0C7H (11000111B) and the
register R1 the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the
destination register for a "0" value. Because the mask value does not match the test bit, the Z
flag is cleared to logic zero and can be tested to determine the result of the TM operation.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-86

WFI — Wait for Interrupt

WFI

Operation:

The CPU is effectively halted before an interrupt occurs, except that DMA transfers can still take
place during this wait state. The WFI status can be released by an internal interrupt, including a
fast interrupt .

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6n 3F

(n = 1, 2, 3, …)

Example: The following sample program structure shows the sequence of operations that follow a "WFI"
statement:

EI
WFI
(Next instruction)

Main program
.
.
.

.

.

.
Interrupt occurs

Interrupt service routine
.
.
.
Clear interrupt flag
IRET

Service routine completed

(Enable global interrupt)
(Wait for interrupt)

S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec) INSTRUCTION SET

6-87

XOR — Logical Exclusive OR

XOR dst,src

Operation: dst ← dst XOR src

The source operand is logically exclusive-ORed with the destination operand and the result is
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever
the corresponding bits in the operands are different. Otherwise, a "0" bit is stored.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 B2 r r

6 B3 r lr

opc src dst 3 10 B4 R R

10 B5 R IR

opc dst src 3 10 B6 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

XOR R0,R1 → R0 = 0C5H, R1 = 02H

XOR R0,@R1 → R0 = 0E4H, R1 = 02H, register 02H = 23H

XOR 00H,01H → Register 00H = 29H, register 01H = 02H

XOR 00H,@01H → Register 00H = 08H, register 01H = 02H, register 02H = 23H

XOR 00H,#54H → Register 00H = 7FH

In the first example, if the working register R0 contains the value 0C7H and if the register R1
contains the value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with
the R0 value and stores the result (0C5H) in the destination register R0.

INSTRUCTION SET S3C80E5/P80E5/C80E7/P80E7 (Preliminary Spec)

6-88

NOTES

